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SUMMARY 

This report discusses the use of eigenspace techniques for the design 
of an active flutter suppression system for a hypothetical research drone. 
One leading edge and two trailing edge aerodynamic control surfaces and 
four sensors (accelerometers) are available for each wing. Full state 
control laws are designed by selecting feedback gains which place closed 
loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing 
flutter and reduce gust loads at the wing root while yielding acceptable 
robustness and satisfying constraints on rms control surface activity. 
These controllers are realized by state estimators designed using an 
eigenvalue placement/eigenvector shaping technique which results in 
recovery of the full state loop transfer characteristics. The resulting 
feedback compensators are shown to perform almost as well as the full 
state designs. They also exhibit acceptable performance in situations in 
which the failure of an actuator is simulated. 
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SECTION 1 

I NTRO D U CTlO N 

This report describes a study of the use of eigenspace techniques for 
the design of an active flutter suppression/gust load alleviaton system for 
a mathematical model of a hypothetical flight test vehicle. Eigenspace 
techniques use feedback control to place closed loop eigenvalues and shape 
closed loop eigenvectors to achieve performance specifications. At the 
beginning of this study, aircraft applications of eigenspace techniques had 
been primarily in rigid body eigenvalue placement and modal decoupling to 
improve handling qualities [I ,2,3,4]. Ostroff and Pines [5] used eigenvalue 
placement to design a flutter controller for a hypothetical aircraft, but 
did not attempt eigenvector shaping. More recently Alag, Burken, and 
Gilyard [6] applied eigenspace techniques to the design of of an output 
feedback system for suppression of non-symmetric flutter of an 
oblique-wing aircraft. 

Active suppression of wing flutter can result in substantial weight 
savings and increases in performance compared with passive methods such 
as increased structural stiffness, mass balancing, and speed restrictions 
[7]; consequently, there has been considerable research on the development 
of techniques for the design of active flutter control systems. Much of 
this work has focused on the DAST (Drones for Aerodynamic and 
- Structural lesting) ARW-1 and ARW-2 (Aeroelastic Research Wing) flight 
test vehicles. The DAST flight test vehicles are Firebee I I  Drones which 

W l l l Y 3  WILI I  I l lY l l  ClstJeLL 

ratio, super-critical wings which are aerodynamically and structurally 
similar to those proposed for future air transports [8]. These wings are 
designed to flutter within the flight envelopes of the drones. 

Several techniques have been used to design flutter control systems 
for the DAST vehicles. Abel, Perry and Murrow [9] compare two flutter 
control systems. One system design is based on classical 
s i n g I e- i n p u t-s i ng I e- o ut p ut ( S I S 0) feedback co n t r o I tech n i q u e s [ 1 01 an d 
the other on the aerodynamic energy method of Nissim [ll]. Newsom 
applies linear quadratic regulator (LQR) theory to the flutter suppression 
of the DAST wing [12] and Abel, Newsom, and Dunn describe an analytical 
and experimental comparison of the resulting controller with a controller 
designed using the aerodynamic energy approach [I 31. Mahesh, Stone, 
Garrard and Dunn [14,15] use linear quadratic Gaussian (LQG) methodology 
coupled with the the Doyle-Stein procedure [16] for loop transfer recovery 
(LTR) to design a flutter controller for a full-sized wind tunnel model of 
the DAST wing. Mukhopadhyay, Newsom, and Abel present a method for 
designing a reduced-order LQR based controller for the DAST wing [17]. 

I- ,lave - beeri by iepiaciiiy cofiL-efiiiofia: .--:--- ... :+L. L:-L m r r r r r L  
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Newsom describes a practical flutter controller design based on LQR 
methodolgy for the DAST ARW-1 vehicle 1181. Schmidt and Chen [I91 
present a design based on classical SlSO techniques for this aircraft and 
Adams and Tiffany [20] and Takahashi and Slater [21] discuss designs 
developed using LQG and LQR theory. Garrard and Liebst [22] compare full 
state eigenspace and LQR flutter controller designs for the DAST ARW-2 
and Liebst, Garrard and Adams [23] use eigenspace techniques and 
frequency response matching to design a realizable feedback compensator 
for flutter suppression for this vehicle. 

The flutter modes to be suppressed are symmetric; consequently, there 
are three sets of control surfaces on the actual DAST vehicle which could 
be considered for use in flutter suppression. These are (1) the elevator, 
(2) a set of flaps mounted inboard on each wing and (3) a set of ailerons 
mounted outboard on each wing. In the actual DAST vehicles the elevator 
is used for active control of the unstable short period longitudinal mode 
and for gust load alleviation, the inboard flaps are used for manuever load 
control and gust load alleviation, and the ailerons are used for flutter 
suppression. Since the ailerons operate symmetrically for suppression of 
symmetric flutter, flutter suppression systems for the actual DAST 
vehicles are SISO. All of the controller design techniques used in the 
studies listed above with the exception of classical SlSO procedures are 
easily applied to the design of multi-input-multi-output (MIMO) control 
systems, and in fact the full power of these techniques is only apparent in 
MlMO systems. It is well known that in a controllable system with full 
state feedback and two or more control inputs, it is possible to place 
closed loop eigenvalues in any position and also to shape closed loop 
eigenvectors [24]. Dynamic response depends on both eigenvalue location 
and eigenvector shape, thus the ability to both explicitly place closed loop 
eigenvalues and shape closed loop eigenvectors is useful for the control 
system designer. 

Since eigenstructure techniques are most useful when there are two or 
more control inputs, the authors of this report examined the use of the 
outboard ailerons in conjunction with both the flaps and the elevator. It 
was found that the flaps were ineffective for flutter control and attempts 
to include these surfaces seriously degraded stability margins compared 
with the use of the outboard ailerons alone [22]. The elevator is intended 
to control the longitudinal rigid body modes and inclusion of the elevator 
and rigid body modes along with the outboard ailerons and flexure mode 
simply resulted in a design which was essentially two SlSO systems, one 
which controlled low frequency (rigid body) response with the elevator and 
the other which controlled high frequency (flexure mode response) with 
the outboard ailerons [23]. Since an adequate MlMO eigenspace controller 
could not be designed from mathematical models of the actual DAST 
vehicles, hypothetical control surfaces were added to the mathematical 
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model of the DAST ARW-2. Three possible surfaces were considered: the 
existing outboard aileron called the TEO (Irailing Edge Outboard) surface, 
an aileron just inboard of this surface called the TEI (Irai l ing E d g e  
Inboard) surface, and an outboard leading edge (LE) surface. The locations 
of these surfaces and the four accelerometers available for measuring the 
motion of the wing are shown in Fig. 1. Designs which use all three 
surfaces and the LE and TEO surfaces only are studied. 

Eigenstructure assignment can be achieved directly by least squares 
techniques [l-4,22,23] or asymptotically by LQR methods [25,26]. Both 
methods have advantages and disavantages. Full state MlMO LQR 
controllers have guaranteed good stability margins [27]; however, since a 
state estimator is almost always required in the feedback loop these 
margins may be lost in practice unless some type of LTR procedure is used 
to partially restore them. The direct approach does not result in 
guaranteed stability margins; however in practice margins are often good 
and Gilbert [28] has shown that sensitivity of eigenvalue location to 
parameter variations can be minimized if the closed loop eigenvectors are 
made as orthogonal as possible. The asymptotic LQR approach requires a 
controllable system while the direct approach does not and in fact can be 
used to shape eigenvectors associated with uncontrollable eigenvalues. 
The direct approach can be used to to design a gain matrix which acts on 
sensor outputs for direct output feedback. Also an eigenspace approach to 
the design of state estimators which exhibit LTR has recently been 
developed [29]. Finally the asymptotic LQR approach drives some closed 
loop eigenvalues to infinity. This may cause bandwidth problems. The 
direct approach can be used to maintain eigenvalues in their open loop 
position if the response associated wiiii these eigenvaiues is saiisiacioiy 
and it is not desired to move them. For these reasons, the direct design 
approach is used in this study. 

Eigenspace techniques are used to design full state control laws which 
stabilize the wing, reduce wing root gust loads, and result in good MlMO 
stability margins without exceeding limits on rms control surface 
deflections and rates. These full state controllers are then realized by 
use of dynamic state estimators. An eigenspace procedure which is very 
similar to the full state design procedure is used to design these state 
estimators so that they exhibit loop transfer properties which are very 
similar to the full state designs. The resulting compensators, which 
convert accelerometer outputs to actuator inputs, are shown to perform 
adequately even when the failure of a control surface is simulated. 

The remainder of this report is divided into six major sections. In the 
first section, the performance requirements and mathematical models 
used in the study are described. Next the theory of eigenspace design is 
given for full state feedback and for estimators which exhibit LTR. The 
application of the theory to the design of full state flutter controllers 
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which also provide gust load alleviation is presented in the third section. 
This is followed by a description of the design of the state estimator used 
to realize the full state control laws. The final designs are given in the 
next section and the last section contains the conclusions. 

a s e n s o r  #1 
0 s e n s o r  # 2  

A s e n s o r  # 3  

+ s e n s o r  # 4  

1.05 

t l  

1 9.49 

28.8 O J i n  f ( a l l  d i m e n s i o n  

3.69 2 

P l a n f o r m  o f  Wing 
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SECTION 2 

PERFORMANCE REQUIREMENTS AND MATHEMATICAL 
MODELS 

2.1 Aeroelastic Wina Model 

The system to be modeled consists of the wing, a single leading and 
two trailing edge control surfaces, actuators, and a set of acclerometers 
used to sense the motion of the wing. The planform of the wing is shown 
in Fig. 1. The leading edge and two trailing edge control surfaces and the 
four accelerometer locations are indicated. The design flight condition 
is at a Mach number of 0.86 and an altitude of 15,000 ft (this corresponds 
to a velocity of 909 fps and a dynamic pressure of 4.29 psi). At this flight 
condition, the uncontrolled wing flutters and the flutter control system is 
required to stabilize the wing without exceeding rms control surface 
displacements of 15 deg and displacement rates of 740 deg/sec under a 12 
fps rms vertical wind gust. 

The aeroelastic model of the wing is given as 

0 

In this form mass coupling between c and cc has been  neg lec t ed .  [Qc(s)] 

is calculated as a function of reduced frequency by a doublet lattice 
procedure and is approximated by the matrix of transfer functions 

9 

k 

i =  1 
[Q,(S)] = [Ao]+[A1 I [ c s / ~ V ] + [ A ~ ] [ C S / ~ V ] ~ +  E [ A ~ + ~ I s / ( s + ( ~ V / C ) ~ ~ )  (2) 

This type of model has been widely used to represent unsteady 
aerodynamic forces in the design of flutter control systems [8-23,301. 
The usual procedure is to select the pi's to span the reduced frequency 

range of interest and then choose the Ai's so as to give the best least 

squares fit to [Q,] over the range of reduced frequencies for which [Q,] is 

calculated. In a previous study, the authors selected the values of the Pi's 

in a different way [22]. An error matrix was defined as 
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E( jo )  [Q,(Jo)-QA(Jo)l 

The norm of this matrix is bounded above and below by its maximum and 
minimum singular values, i.e., 

The singular values of any matrix E are defined as the positive square 
roots of the eigenvalues of E*E. If the 8;s are chosen to minimize Z(E), 

the norm of the error matrix will be small. A single j3i with a value of 

0.13 is used in this study, this is very close to the reduced flutter 
frequency of 0.15. 

The model initially provided had two rigid body modes, heave and pitch, 
and eleven flexure modes. The flexure modes are shown in the appendix. 
Since the rigid body modes are at frequencies at least 50 times less than 
the lowest flexure mode, the rigid body modes were eliminated from the 
model. The resulting model has eleven degrees of freedom. The root locus 
of the eleven degree of freedom model for varying flight velocities at 
15000 ft is shown in Fig. 2. It clearly indicates classical bending-torsion 
flutter with frequency coalescence of modes 1 and 3. The eigenvalues of 
the eleven degree system at the design flight condition of M = 0.86 and 
15000 ft are given below. 

Open Loop Eigenvalues - 11 Degree of Freedom Model 

Mode Number Real Part Imaginary Part 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

6.037 
-0.349 
-44.460 
-1.359 
-2.091 

-1 4.720 
-22.530 
-6.700 

-1 3.040 
-1 6.790 
-6.970 

k110.5 
k94.2 

k1 58.5 
+I 93.7 
k232.3 
k328.7 
k276.7 
k394.7 
k430.8 
k556.8 
k594.6 

In order to reduce the order of the model, the root loci for various 
truncations of the model were obtained. Truncations were obtained by 
simply eliminating the rows and columns in the system dynamics matrix 
which correspond to the modes which were eliminated. To concisely 
present the results of this study, the eigenvalues of the flutter mode 
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(mode 1) at the design flight condition are shown for various truncations. 
The full 11 degree of freedom model is case 1. 

Mode 11 
C 
/ 

Mode 10 

m- Design Flight 
Condition 
(909 fps) 

Mode g4- 

Mode 8 4 -  

Mode 6 

Mode 5 

Mode 4 

Mode 3 - 

Mode 1 ( 

600 

500 

400 

300 

200 

I 
100 
Mode 2 

~ - 
-50 -40 -30 -20 -10 0 10 20 

Real 

Figure 2: Locus of Open Loop Aeroelastic Roots with 
Velocity for Eleven Mode Model 
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Flutter Mode Root at Design Condition for Various Truncations 

Case Modes Retained Model Degrees Mode 1 Root 
of Freedom 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  
13 
14  
15 
16 
17 
18 
19 
20 
21 
22 
23 

1-1  1 
1 -10  
1 - 5 , 7 4 1  
1-9 
1 - 4 , 7 4 1  
1-8 
1 - 7  
1 -5 ,7 ,8  
1 -5,7,9 
1-6 
1 -5 ,7  
1 -4 ,7 ,8  
1 -4,7,9 
1-5 
1 -4 ,7  
1 -4 ,8  
1,2,4,6,7 
1,3,4,5,7 
1,2,4,5,7 
1,2,3,7,9 
1,3,4,5,7,9 
1,3,4,7,9 
1 -3 ,7  

11 
10 
10 

9 
9 
8 
7 
7 
7 
6 
6 
6 
6 
5 
5 
5 
5 
5 
5 
5 
6 
5 
4 

6.037kj110.5 
6.1 69kj110.7 
5.453kj110.5 
6.755kj1 10.9 
4.01 4kj110.0 
4.027kj1 11.5 
3.1 58kjl12.4 
3.503kj111.6 
3.580kj110.5 

-8.1 35+j 80.7 
0.053kj110.8 
1.925kj111 .O 
2.097kj1 09.9 

-8.234kj 80.5 
-1.01 5kj110.0 
-8.084kj81 .O 

-1 1.570kj96.1 

-1 1.430kj95.7 
-0 .0404  93.7 

1 .I  90+j110.7 

4.1 50kj110.5 
2.700+j110.0 

-9.521 kjlOO.8 

As the table shows, many of the lower order models do not exhibit 
flutter. Naturally modes 1 and 3 must be retained, however, which of the 
remaining modes to retain is not obvious. Examining the mode shapes, it 
can be seen that modes 2,5,6, and 8 are primarily fuselage and/or tail 
modes and therefore can be safely neglected. Examining cases 19 and 20, 
both modes 3 and 4 are necessary for flutter. Case 10 shows that mode 7 
is also necessary for for flutter to occur. Cases 6 and 8 shows that mode 
6 has little influence, Comparing cases 22 and 13, it can be seen that 
mode 2 can be neglected. Case 22 adequately represents the behavior of 
the wing with only 5 degrees of freedom. The root locus with velocity of 
this reduced order model as shown in Fig. 3 is very similar to original 11 
degree of freedom model shown in Fig. 2; consequently, this model which 
contains modes 1,3,4,7,and 9 is used for the control designs. A structural 
damping factor of 0.005 is assumed for each mode and flutter occurs at a 
velocity of about 896 fps. 
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Figure  3: Locus of Open Loop Aeroelastic Roots with 
Velocity f o r  Five Mode Model 
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2.2 Gust and Actuator Models 

The control surface actuator transfer functions are the same for each 
surface and are given as 

E,,i(S)/Ui(S) = 1.7744728~1 07/(s+ 1 80)(s2+251 ~ + ( 3 1  4)2) (3)  

The vertical wind gust is modeled by a second-order Dryden model 

The rms gust velocity is 12 fps. 
poles and the gust poles were separated slightly in numeric calculations. 

For ease of recognition both the actuator 

2.3 State Space Models 

Equations (1-4) can be combined to give the mathematical model for 
the wing, control surfaces and actuators, and wind gust in vector matrix 
form as 

x = AX + BU + rq (5) 

The order of this model is 26. The state vector for the wing consists of 
five structural displacements, five corresponding rates, five unsteady 
aerodynamic states, nine control states (three for each surface), and two 
gust states. The motion of the wings can be sensed by up to four 
accelerometers mounted on the front and rear spars of each wing (see Fig. 
1). The output of each accelerometer can be expressed as 

However, f iB  = 0 and 

Y 

rq is negl ig ib le,  therefore 

Thus the measurement vector is 

y =cx (7 )  
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Section 3 

Theory of Eiuenspace Desian 

A common method for the design of multivariable control systems is to 
use LQR theory to design full state controllers which achieve desired 
performance and to realize these controllers via Kalman filters which 
provide estimates of the system states [31]. For full state LQR controllers 
the minimum singular value of the return difference matrix is always 
greater than or equal to one. This guarantees gain margins of at least +6 DB 
with no variations in phase, and phase margins of k60 degrees with no 
variations in gain [27]. These stability margins are not necessarily retained 
if a Kalman filter is used in the feedback loop to estimate the system state 
[16]. However, stability margins of the full state controller can be 
recovered if the Kalman filter is designed using the LTR methods of Doyle 
and Stein [16]. This technique has been used in several studies of active 
flutter suppression systems [I  4,15,20]. 

In this report eigenspace techniques are used to design both full state 
control laws and estimators which result in compensators with loop 
transfer properties which approximate those of the full state controller. 
Eigenspace design techniques for full state feedback control laws select 
feedback gains which place closed loop eigenvalues in desired positions and 
which, if there is .more than one control, shape closed loop eigenvectors. 
Some basic results for eigenspace design are summarized below. More 
detai!ed disciissions can be found in Refs. 22-24 and 2. 

3.1 Eiaenspace Reaulator Desian 

Consider a system described by Eq. 5 with a linear control law 

u = KX (8) 

where Dim(x)=n and Dim(u)=m if the system is controllable and B is full 
rank, the following results can be proven [2,24]: 

1. The position of n closed loop eigenvalues can be arbitrarily 
assigned. 

2. A total of m elements of each eigenvector can be arbitrarily 
selected. 

3. The eigenvector associated with the eigenvalue hi, must lie in the 

subspace spanned by ( IXi-A)-’ B. 



If it is desired to move an eigenvalue, the design procedure consists of 
determining the gain matrix K such that for all desired closed loop 
eigenvalue and eigenvector pairs (Xi,vi), 

(A+BK)vi=Xivi (9) 

This is equivalent to finding an m-dimensional vector wi such that 

(IXi-A)vi= B w i (1 0) 

Once the wi's have been found, the gain matrix is calculated as 

Since the desired eigenvectors are in general not achievable, the wi's are 

selected to minimize the weighted least squares difference between the 
elements of the desired and the attainable eigenvectors as given by the 
following performance index. 

Ji = (vi-vi d )*Pi(vi-vi d ) 

where Pi is a positive definite symmetric matrix whose elements can be 

chosen to weight the difference between certain elements of the desired 
and attainable eigenvectors more heavily than others. Adjoining Eq. 10 to Ji 

with the Lagrange multiplier ui, taking partial derivatives with respect to 

v i  and wi, and setting these derivatives equal to zero, we get 

where 

N i  

N i  

(IXi-A) 

0 

P 
i 

-B 

0 

0 
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If Ni is non-singular, the attainable vi and wi are then 

r 

1 1  

0 

If an eigensolution is not to be altered, setting wi=O assures that the 

associated Xi and vi remain in their open loop configuration. In the case of a 
complex eigenvalue, a real gain matrix can be obtained from a simple 
t ran sfo rmat io n [24]. 

We will now show that whenever the system is controllable, Ni is in fact 

non-singular. First, consider the state equation transformed into diagonal 
form 

~ = A x + B u  A =  

Then 

I X i - A  = 

0 

L 
A n  O i  

Now, assume the eigenvector weighting matrix Pi is diagona., then 
becomes 
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rows 1 t o  n { 
N i  = t o  

n t m  

n t m t l  
t o  
2ntm 
rows I 

( X i - - X 1 )  . . 0 

. .  
0 . . ( X i - 1 , )  

0 . . .  0 

0 . . .  0 
P1 . . .  0 

. .  
Pn 0 . . .  

0 . . .  0 

0 . . . 0  
0 . . .  0 

0 . . .  0 

0 . . .  0 

0 . . .  0 

(Xi-X1)* . . 0 

. .  
0 . . ( X i - X n ) *  

To prove that Ni is nonsingular, we need only prove Ni has rank 2n+m or that 

all possible sums of multiples of rows will not result in a zero row. If we 
have a controllable system the first n+m rows have rank n+m for all values 
of the desired eigenvalue Xi. Since Pi is positive definite, the last n rows 

have rank n. Last, if Pi is positive definite the last n rows could never 

cancel the first n+m rows and vice versa. 
If the system is uncontrollable, transforming it to the controllability 

canonical form would easily show that the first n+m rows of Ni would not 

have rank n+m when hi was one of the uncontrollable eigenvalues. Solutions 

for eigenvector shaping of an uncontrollable eigenvalue Xg (the gust 

eigenvalue in the present problem) can still be obtained, however. This 
problem can be solved by partitioning the eigenvector vg associated with 

the eigenvalue X as follows g 

where vg I I contains only uncontrollable states. The equation 

I 
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is automatically satisfied if vg is selected to be equal to the open loop 

portion of v which contains the uncontrollable states. Since hg is not an 

eigenvalue of AI, (XgI - AI) is non-singular and by performing the indicated 

calculations, w and vgl can be determined in much the same way as for the 

controllable eigenvalues 

g 

g 

where 

0 

-Qvgll Pg vgId I 
A g l  - A I )  -BI 

0 0 

pg 0 I 0 

B I T  

(Ag' - A' ) *  

Once all wi's and vi's have been calculated the regulator gain matrix is 

determined from Eq. 11. 

3.2 Eiaensnace Estimator Desian 

Once the full state regulator gains, K, have been determined the problem 
of reconstructing a state esiimaie, i, i r o f i  ~i ieasuisi i imts, y,  must be 
addressed. A common estimation/control scheme is as follows 

n 

U = K X  
Where 

By appropriate choice of K we have demonstrated how to achieve the desired 
closed loop eigenstructure of the plant. However, that was under the 
assumption of full state feedback. The task now is to choose estimator 
gains, L, such that A - LC is stable and the performance (as measured by 
various methods, e.g. transfer functions, rms response, stability robustness, 
etc.) of the regulator/estimator closely resembles that of full state 
feedback. In the Kalman filter L is chosen to produce an estimate that has 
minimal mean square reconstruction error e = x - x̂  to uncorrelated additive 
white plant and measurement noises. But as pointed out by various authors 
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[I61 the Kalman filter may not be  robust even when the full state regulator 
is. For MlMO systems the stability robustness is typically measured by the 
minimum singular value of the return difference matrix occuring in a 
bounded frequency range. A value near one for th i s  minimum singular value 
indicates good stability robustness [31]. In the full state feedback case the 
return difference matrix is 

I - F(s) 

Where 
F(s) = K (SI - A)-’ B 

and in the combined regulator/estimator case it is 

I - H(s) G(s)  

Where 

H(s) = K (SI - A - BK + LC)-l L 

G(s) = C (SI - A)-’ B 

In the SlSO case it is clear that if one wishes to recover F(s) t h e n  L should 
be chosen such that 

H(s) =: F(s) / G(s)  

inverting the plant by sending the poles of H(s) to the zeros of G(s).  Care 
mus t  be taken to assure that the eigenvalues of the estimator, A - LC, are 
stable. In the MlMO case it is less clear how one would invert the plant and 
recover F(s). 

A technique for designing L in the MlMO case to recover F(s) was 
proposed by Doyle and Stein [16]. They showed that LTR of full  state 
regulators can be achieved with a Kalman estimator by adding a fictitious 
noise q2BBT directly to the input of the plant during the estimator design. 
For q=O the ordinary Kalman estimator results. As q is increased the LTR 
improves resulting in the recovery of full state stability robustness. A key 
result from Ref. 16 is that as q + 00 the estimator gains L + qBS + 00, and 
the estimator poles asymptotically approach the finite transmission zeros 
of G(s) (ie plant inversion) and infinity in a Butterworth pattern. Several 
investigators (the present authors included) seized upon t h i s  fact to 
attempt to achieve LTR with eigenspace assignment algorithms as opposed 
to Kalman filter algorithms by directly placing the estimator poles at (or 
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near) the plant transmission zeros. 
In a multivariable system, the zeros of the individual transfer functions 

no longer correspond to the classical notion of zeros. In a SlSO system as 
the elements of the output feedback matrix are allowed to approach infinity 
the closed loop poles of the estimator approach the locations of the finite 
zeros (or infinity if there is an excess) of the plant. As demonstrated by the 
Doyle-Stein LTR procedure the equivalent occurs in MlMO systems. The 
closed loop estimator poles approach the finite transmission zeros of G(s)  
which can be determined from 

I -c 0 

Unfortunately, it is not quite as simple 

( 1  3) = o  

as just sending the estimator poles 
to the transmission zeros. A recent paper by Kazerooni and Houpt [29] 
explains how LTR is achieved with eigenspace placement. 

The key lemma to successful LTR with eigenspace placement is the 
following result which is proved in Ref. 16. If L is chosen such that 

then H(s) approaches pointwise (ie, nonuniformly) 

and therefore 

Thus, by picking 

L = qBS (1 6) 

Eq. 14 will be satisfied and the LTR of Eq. 15 will be achieved as q -+ 00. Ref. 
29 shows that, for a minimum phase plant, as q -+ 00 the consequences of 
choosing L as in Eq. 16 are: 

1. The j I n-m finite closed loop eigenvalues, hi, of A-LC and A + BK -LC 

approach the finite transmission zeros, zi, of the plant. 
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2. The remaining n-j closed loop eigenvalues approach infinity at any angle. 

3. The left closed loop eigenvector vi of A-LC associated with the finite 

closed loop estimator eigenvalue, Xi, approaches the left zero- 

direction, pi, of the transmission zero, zi, which satisfies 

= o  

4. H(s) G(s) + F(s) pointwise. 

The finite asymptotic eigenstructures resulting from both Eq. 14 and 

( 1  7 )  

Eq. 16 
are the same, but the asymptotic infinite eigenstructures are generally 
different. If S is selected arbitrarily, the form of L given by Eq. 16 may not 
result in a stable estimator. Since both forms guarantee the pointwise 
approach of H(s)G(s) to F(s) we would expect any estimator with the finite 
asymptotic structure of 1. thru 3. to achieve LTR. Therefore, for a minimum 
phase system, an estimator which combines any stable infinite 
eigenstructure with the finite eigenstructure of 1. thru 3. would result in 
LTR. 

The procedure for the design of estimators which achieve LTR with the 
eigenspace placement algorithms previously described is as follows: 

1. Determine the finite transmission zeros, zi, and associated left 

zero-directions, pi, from Eq. 17. 

2. Drive j finite eigenvalues of A-LC to (or near) the finite transmission 
zeros, zi. The associated desired (and in this case, attainable) left 

eigenvectors should be chosen as pi. 

3. Place the remaining n-j eigenvalues of A-LC at locations far into the 
left-half plane. The desired left eigenvectors for these modes are 
chosen arbitrarily and have little effect on the LTR. 

4. As with the Doyle-Stein procedure, improved LTR is obtained as the 
finite eigenvalues are moved closer to the transmission zeros and as 
the infinite eigenvalues are moved further left. Therefore, several 
iterations may be required before sufficient recovery is achieved. 
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Difficulties in using this LTR procedure will arise if the plant has 
right-half plane transmission zeros (ie, nonminimum phase). Placing the 
estimator poles at these right-half plane zeros would result in an unstable 
system, admittedly with good LTR, but nonetheless unstable. In the case of 
a nonminimum phase plant, the Doyle-Stein procedure selects the stable 
Riccati solution for the estimator which drives the poles to the mirror 
image of any unstable transmission zeros. Thus, a stable estimator is 
obtained but LTR is not guaranteed. If there are no right-half plane 
transmission zeros in the frequency range over' which LTR is important, 
then placement of estimator poles at the mirror image of right-half plane 
transmission zeros typically achieves reasonable LTR. 
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Section 4 

Full State Feedback Desian 

4.1 Eiaenstructure Assianment 

In the discussion which follows, unless otherwise stated, all results 
are for a control system using all three control surfaces. In flutter 
suppression/gust load alleviation designs in this report all of the stable 
open loop eigenvalues are used as desired closed loop eigenvalues. 
However, at the design velocity the aircraft's wing is unstable in the first 
bending mode, yielding a pair of unstable eigenvalues at +2.698fj1 09.9. 
Two closed loop positions are considered for these eigenvalues. The first 
position is obtained simply by "flipping" the unstable eigenvalues into the 
left-half plane to -2.698kj109.9 as minimum energy LQR theory would 
place them [32]. The second position, -8.lkj109.9, is obtained by moving 
the eigenvalues twice as far to the left as they move when they are simply 
f I i pped. 

Figs. 4 and 5 show how rms bending moment, torque and singular value 
vary with elastic mode weighting. It can be seen that the -8.1kj109.9 
placement yields higher minimum singular values and hence a more robust 
system than the -2.698fjl09.9 placement. (In general, references to 
minimum singular value should be taken to mean the smallest minimum 
singular value of the return difference matrix which occurs over a bounded 
frequency range at some fixed flight velocity.) In addition, comparing the 
first column of Table 1 with that of Table 2 reveals that this placement 
doesn't cost significantly more in terms of control effort (when using the 
decoupled eigenvectors described below), while the triangular points in 
Fig. 4 show that bending moment is unchanged. Comparing the triangular 
points in Fig. 5 reveals that torque is actually reduced by using this 
placement. 

Using -8.1fj109.9 for the desired mode 1 eigenvalues, and the open 
loop eigenvalues for the remaining desired closed loop eigenvalues, the 
desired eigenvectors are then selected. Using the open loop eigenvectors 
as is done for the triangular points in Figs. 4 and 5 provides a simple 
means of selection, but not the most effective. By decoupling the first 
bending mode from the other modes a 25% reduction in bending moment is 
obtained. With only three controls to shape the eigenvectors, the actual 
decoupling which results is of course only partial. The desired 
eigenvectors to achieve this decoupling are obtained by performing the 
following modifications upon the open loop eigenvectors. In the desired 
first bending mode eigenvector, the elements corresponding to structural 
modes 3, 4, 7 and 9, their corresponding unsteady aerodynamic elements, 
and the control mode elements are set to zero to minimize the energy in 

20 



1 

Weightings 

Elastic Modes 

1 0  100 1000 

RMS Responses 

Cont ro l  Deflections (deg) 

TE Outboard 3 .077  7 .359  14.69 1 2 . 6  

TE Inboard 9 .425  3 .836  0.8752 1 . 9 1  

LE 3 . 8 7 3  11.83 20.28" 24.22* 

Control R a t e s  (deg/sec 1 

TE Outboard 47 .36  95.43 168.7 142 .4  

TE Inboard 1 1 7 . 2  51 .95  9.2 25 .7  

LE 5 9 . 6 3  1 3 7 . 5  229.6 277.2 

* Saturated 

T a b l e  1: E f f e c t s  o f  I n c r e a s i n g  E l a s t i c  Mode Weight ings  on 

1 

I 

10000 

1 1 . 2 1  

3 .956  

23.74" 

1 2 4 . 1  

50 .42  

275.4 

RMS C o n t r o l  S u r f a c e  A c t i v i t y  (Mode 1 Pole :  

Weight ings 

Elast ic  Modes 

10  100 1000  

RMS Responses 

Control Deflections (deg) 

TE Outboard 3 .074  7.368 1 4 . 7  1 2 . 6  

TE Inboard 9.438 3.845 0.878 1 . 9 1 2  

LE 3.890 11 .84  20.28" 24.22* 

Control Rates (deg/ sec) 

TE Outboard 49.69 97.44 167.9 1 4 1 . 4  

TE Inboard 1 2 3 . 7  5 6 . 2 1  10.94 25 .62  

LE 66.18 139 .7  229.2 276 .5  

* Saturated 

10000 

1 1 . 2 1  

3 .958  

23.74* 

1 2 3 . 2  

5 0 . 3  

275 .0  

T a b l e  2:  Effects of I n c r e a s i n g  E la s t i c  Mode Weigh t ings  on 
RMS C o n t r o l  Su r face  A c t i v i t y  (Mode 1 Po le :  -8.1kj109.9) 
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the first bending mode and to reduce the control effort. In all of the other 
eigenvectors, the elements corresponding to the first bending mode's 
displacement and rate and to the first unsteady aerodynamic mode are set to 
zero in order that the other modes do not excite the first bending mode. The 
reduction in bending moment is found to arise largely from the zeroing of 
the first bending mode elements in the desired gust mode eigenvectors. A 
lesser reduction is achieved in torque since the first bending mode has a 
small torque component. 

4.2 Eiaenvector Weiahtinq 

By altering the Pi in Eq. 12 to increase the weightings on the elastic 

mode elements of the eigenvectors when finding vi, the elastic mode 

elements are made to approach the desired zero values more closely. This 
improves the bending mode decoupling described above, consequently 
reducing bending moment and torque loads. The arrows in Figs. 4 and 5 
indicate the downward trend in structural loads as the elastic mode 
weightings increase. Elastic mode weightings of 100 or greater lead to 
saturation of the LE surface, as shown in Tables 1 and 2. The minimum 
singular values are nearly constant as elastic mode weightings increase to 
10000, at which point the minimum singular values drop off sharply. This 
suggests that the structural loads can be further reduced with no loss in 
robustness if the LE control could be kept from saturating. Note that the 
drop in minimum singular value is less severe for the - 8 . l k j l  09.9 
eigenvalue position, falling only to 0.929 compared to 0.706 for the other 
position. 

Since only the LE control is saturating and the workload is not evenly 
distributed between the controls, the control weightings are altered to 
force the system to distribute the workload more evenly between the 
control surfaces. By increasing the weig htings for eigenvector components 
corresponding to a particular control surface, those components are made to 
agree more closely with the desired value of zero. As a result, that surface 
works less, while the others will work more. Tables 3, 4, and 5 show 
various control weightings and the corresponding results for elastic mode 
weightings of 100, 1000, and 10000, respectively. The results are 
summarized in Fig. 6. 

By evenly distributing the workload, LE control saturation is avoided 
and it is possible to increase the elastic mode weighting to 10000. This 
allows a 50% reduction in bending moment compared to the 25% reduction 
possible without distributing the workload. The drop in minimum singular 
value to 0.929 at this elastic mode weighting is judged to be acceptable. 
Using the results of Ref. 33, this corresponds to a +23,-5.7 DB MlMO gain 
margin (with no change in phase) and a +_55 degree MlMO phase margin (with 
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Velocity (fps) 909 909 909 909 

Weight ings 

Elastic Modes 

100 100 100 100 

Control Surfaces 

TEO (x,v,a)** 1,1,1 5 ' 5 3  5,1,1 7,J-r 1 

T E I  (x,v,a) 1,Ir 1 1,1,1 1,1,1 1,1,1 

LE (x,v,a) 1,1,1 4,4,4 4 , ~  1 7 , 1 , 1  

RMS Responses 

Control Deflections (deg) 

TE Outboard 1 4 . 7  1 0 . 9  12 .61  1 1 . 7 3  

TE Inboard 0 .878  9 .742  6.612 9.467 

LE 20 .28*  9 .599  12.22 8 .645  

833 

0. 

0 .  

0. 

833 

100 

1 1 . 2 3  

.lo. 87 

8 . 1 3 6  

Control Rates (deg/sec) 

TE Outboard 1 6 7 . 9  125 .0  143.6 133 .9  0 .  1 1 9 . 3  

TE Inboard 10 .94  1 2 8 . 9  87 .53  1 2 2 . 1  0 .  1 2 8 . 1  

LE 229 .2  1 0 9 . 5  137 .5  98 .35  0 .  85 .47  

Bending Moment (inch-.lbs) 

16350 I5870 16350 16350 22980 13260 

Shear ( lb s  1 

464.8 447.4 460.7 459 .3  412 .1  393 .2  

Torque (inch-lbs) 

817 .5  1747 650 .1  1926 1 6 1 1  2049 

Minimum Singular Value 

0.997 0 .673  0.997 0 .997  - 0.970 

* Saturated 

** x = displacement, v = rate, a = acceleration 

T a b l e  3: Effects o f  D i s t r i b u t i n g  C o n t r o l  S u r f a c e  
Workload on RMS C o n t r o l  Surface A c t i v i t y  (Elas t ic  Mode 
Weight ing = 1 0 0 )  
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Velocity ( fps)  909 

TEO (x, v, a )  ** 

T E I  (x,v,a) 

LE (x,v,a) 

TE Outboard 

TE Inboard 

LE 

909 909 909 

Weightings 

Elas t i c  Modes 

1000 1000 1000 1000 

Control Surfaces 

1,1, 1 5,5, 5 5,1,1 5,1,1 

1,1, 1 1,1, 1 1,1, 1 1,1, 1 

1,1, 1 7,717 7,111 10,1,1 

RMS Responses 

Control Deflections (deg) 

12.6 10.95 11.67 11.69 

1.912 11.98 9.02 10.57 

24.22* 11.12 14.56 12.09 

Control Rates (deg/ sec) 

TE Outboard 141.4 124.5 131.8 132.3 

TE Inboard 25.62 148.8 112.7 131.1 

LE 276.5 127.7 164.5 136.6 

Bending Moment (inch-lbs) 

14010 14210 14310 1452 

* Saturated 

Shear ( l b s )  

425.4 434.3 435.3 440.9 

Torque (inch-lbs) 

331.2 2039 1579 1908 

Minimum Singular Value 

0.995 0.631 0.995 0.995 

** x = displacement, v = rate, a = accelerat ion 

T a b l e  4 :  E f f e c t s  o f  D i s t r i b u t i n g  C o n t r o l  S u r f a c e  
Workload on RMS Cont ro l  Su r face  A c t i v i t y  (E la s t i c  Mode 
Weighting = 1 0 0 0 )  

26 



Velocity ( fps)  

TEO (x,v,a)** 

T E I  (x,v,a) 

LE (x,v,a) 

TE Outboard 

TE Inboard 

LE 

TE Outboard 

TE Inboard 

LE 

909 90 9 909 833 

Weightings 

Elas t i c  Modes 

10000  10000 10000 - 

Control Surfaces 

- 1,1,1 7,1,1 1,1,1 

1,1,1 1,1,1 1,1,1 

1,1,1 35,1,1 35,1,1 - 

- 

RMS Responses 

Control Deflections (deg) 

11.21 10.3 10.49 0. 

3.958 10.94 10.68 0. 

23.74* 14.56 14.62 0. 

Control Rates (deg/sec) 

123.2 114.6 116.7 0. 

50.3 134.0 131.1 0. 

275.0 168.3 168.9 0. 

Bending Moment (inch-lbs) 

131 611 13390 13490 22980 

Shear (Ibs) 

409.0 417.8 419.9 412.1 

Torque (inch-lbs) 

399.3 1620 1611 817.5 

Minimum Singular Value 

0.929 - 0.929 0.929 

* Saturated 

** x = displacement, v = ra te ,  a = acceleration 

833 

10000 

1,1,1 

1,1,1 

35,1,1 

10.07 

11.4 

14.33 

105.3 

130.5 

155.8 

11240 

363.5 

1336 

0.904 

T a b l e  5: Effects of D i s t r i b u t i n g  C o n t r o l  S u r f a c e  
Workload on RMS Con t ro l  Surface A c t i v i t y  (E la s t i c  Mode 
Weight ing = 1 0 0 0 0 )  
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no change in gain). 
In Fig. 6 it can be seen that the bending moment depends largely upon 

the elastic mode weightings and is relatively insensitive to the control 
mode weightings. Since all of the control surfaces are near the tip of the 
wing, they have nearly the same moment arm and roughly equal 
effectiveness in reducing bending moment. It can also be seen that torque 
depends greatly on control mode weightings. By evenly distributing the 
actuator workload, a torque imbalance is created between the two trailing 
edge surfaces and the single leading edge surface. Thus, even distribution 
of the workload between the three surfaces allows elastic mode 
weightings to be increased to reduce bending moment, but at the expense 
of increased torque. 

An interesting effect may be seen in Tables 3 and 4. Compare, for 
example, columns two and three in Table 3. In column two, weightings are 
increased on control surface deflections, rates, and accelerations, 
resulting in a seriously degraded minimum singular value. For column 
three, weightings are increased only on control deflections and the 
minimum singular value is unchanged. Since the designs represented in 
columns two and three are equally effective in distributing the control 
efforts, only the weightings for control deflection are modified in 
subsequent designs in order to preserve robustness. 

In Tables 1 and 2 it can be seen that the TE inboard surface does not 
work very hard for higher elastic mode weightings. Since the TE inboard 
surface is actually smaller and has a smaller moment arm than the the TE 
outboard surface, it is not quite as effective as the other surfaces in 
reducing bending moment, and the controller does not "use" it very much. 

QI I IbG +hn L I I G  U W I I L I W I  -nn+*nl &nr+ U I I V I L  e? ?he TE inboa-rcl surface is low. and since 
making it work more causes a torque imbalance, a two-control system 
without the TE inboard surface is examined as well. Removing this 
surface from the system reduces the order of the system to 23. This 
system exhibits higher bending moment and lower torque than the 
three-control case due to the lack of the TE inboard surface. The 
two-control case has higher minimum singular values as well. This 
illustrates the conservative nature of utilizing the minimum singular 
value of the return difference matrix as a stability robustness measure. 

4.3 Final Full State Desians 

Based on the performances of the different designs and trade-offs 
between gust load alleviation and stability robustness, two eigenvector 
weighting schemes are chosen as candidates for the full state design, one 
each for the three- and two-control cases. The first is a three-control 
system using elastic mode weightings of 10000. The main features of this 
design are that it has the lowest bending moment of any of the designs, 
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with torque and minimum singular value which compare favorably to other 
weighting schemes. The second scheme, for the two control case, uses 
elastic mode weightings of 100. Its main features are high minimum 
singular value and low torque. 

These two full state designs have control deflections which are near 
saturation. To avoid saturation problems due to possible increases in 
control deflections when the state estimator is added to the system, the 
control mode weightings are increased to reduce the control deflections. 
This later proves to be unnecessary. 

This completes the full state designs, which are shown in Table 6. At 
the design velocity both the two- and three-control systems are stable 
and robust. Also shown are the performances of the two closed loop 
systems and the open loop system at a flight velocity of 833 fps at which 
the open loop system is stable. Again both closed loop systems are stable 
and robust, and also provide gust load alleviation by reducing bending 
moment, though at the expense of an increase in torque. 

The effects of a single, undetected control surface failure on the full 
state feedback systems are examined by zeroing the column corresponding 
to the failed control in the control gain matrix K. As shown in Table 7, the 
loss of a control surface greatly reduces the minimum singular value. 
However, even though robustness is lost, the system is still nominally 
stable at the design velocity. 

The loss of a control surface also has a marked effect on torque, such 
as in the two-control case where the failure of either surface nearly 
doubles the torque. In the three-control case, failure of one of the trailing 
edge surfaces actually reduces the torque since the remaining trailing 
edge surface and the LE surface then balance each other. Conversely, 
failure of the leading edge surface leaves the two trailing edge surfaces 
unbalanced and the torque becomes quite high. 
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3-control 2-control Open Loop 3-control 2-control 

Velocity ( fps)  909 90 9 833 833 833 

TEO (x,v,a)* 

TEI  (x,v,a) 

LE (x,v,a) 

TE Outboard 

TE Inboard 

LE 

TE Outboard 

TE Inboard 

LE 

10000 

60,1,1 

110,1,1 

120,1,1 

11.97 

10.49 

1 1 . 9 1  

135.0 

126.3 

139.7 

14600 

440.0 

1945 

0.929 

Weight ings 

Elas t i c  Modes 

100 - 10000 

Control Surfaces 

90,1,1 - 60,1,1 

110,1,1 

60,1,1 - 120,1,1 

1,1,1 - 

RMS Responses 

Control Deflect ions (deg) 

10.09 0.  11.77 

- 0. 10.82 

8.878 0. 11.92 

Control Rates (deg/sec) 

129.6 0. 125.1  

- 0. 1 2 1 . 1  

114.7 0.  130.4 

Bending Moment (inch-lbs) 

20550 22980 12000 

Shear (1bs 1 

474.8 412.1 382.8 

Torque (inch-lbs) 

1048 817.5 1574 

Minimum Singular Value 

0.996 - 0.904 

* x = dispacement, v = r a t e  , a = acceleration 

100 

90,1,1 

1,1,1 

60,1,1 

9.92 

- 

8.71  

113.4 

- 

101.0 

20550 

474.8 

1048 

0.972 

T a b l e  6 :  F i n a l  F u l l  S t a t e  Feedback Des igns  
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3 -control 2 -control 

TEO 

Failed Control 

TE I LE TEO 

TE O u t b o a r d  - 

TE Inboard 9.547 

LE 11.37 

TE Outboard - 

TE Inboard 133.9 

LE 148.4 

15120 

3 5 2 . 1  

922.4 

0 . 5 3 1  

RMS Responses 

C o n t r o l  D e f l e c t i o n s  (deg) 

13.12 12.73 - 

- 10.08 - 

11.74 - 8.82 

C o n t r o l  R a t e s  (deg/ sec) 

145.7 1 4 4 . 1  - 

- 132.4 - 

145.9 - 1 8 0 . 1  

Bending Moment ( inch-lbs) 

19500 19290 20700 

Shear (1bs) 

487.6 502.2 404.5 

Torque (inch-lbs) 

1146 2868 1939 

Minimum Singular Value 

0.649 0 .681 0.242 

T E I  

1 0 . 3 1  

- 

- 

157.7 

- 

- 

23960 

516.7 

1896 

0.580 

T a b l e  7:  Effects of a Single Control Failure on Final 
Full State Designs 



Section 5 

Loop Transfer Recoverv 

After the full state feedback regulator gains K are designed, the state 
estimator gains L are determined using the LTR method described in 
section 3.2. This method requires a square system. Four sensors 
(accelerometers) are available as shown in Fig. 1. The sensors closest to 
the control surfaces are the ones chosen for use in the system. Thus, the 
three-control system uses sensors 2, 3, and 4, and the two-control system 
uses sensors 3 and 4. 

The transmission zeros and left zero directions of the plant are found 
by using the EISPACK routine RGG, which solves the generalized eigenvalue 
problem (hiB-A)xi=O. By letting 

A i  = zi, and x?= [pi T T  <i 1, RGG is made to solve Eq. 17. for zi and pi. The 

transmission zeros thus found fall into three distinct groups. Most are 
well behaved, with magnitudes comparable to the magnitudes of the 
eigenvalues of the system, but some have very large magnitudes, while 
others have very small magnitudes in comparison with the system 
eigenvaiues. Sirice iiie small ii-iagiiitiide z e i ~ s  arise from the dsuble 
differentiations resulting from each accelerometer, these zeros should lie 
exactly on the origin. There are six such zeros in the three-control case 
and four in the two-control case. 

Some of the very large and very small magnitude transmission zeros 
returned by the computer fall into the right half plane. This is caused by 
the errors introduced by finite precision arithmetic. RGG returns the 
zeros in the fractional form (o( real+jwimag)/8 . For the accelerometer 

zeros, a small error in mreal can cause the zero to shift away from the 

origin and into the right half plane. In the case of a large magnitude zero, 
where 4 =:O, a small error in J3 can change its sign, sending the 
transmission zero into the right half plane. 

Fig. 7 shows the transmission zeros found above as well as the open 
loop estimator eigenvalues for the three-control case. In order to keep the 
magnitude of the estimator gains small, the open loop estimator 
eigenvalues are assigned to the closest transmission zeros. Estimator 
eigenvalues corresponding to structural modes 4 and 9, gust modes, and 
unsteady aerodynamic modes are driven to nearby transmission zeros. The 
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Figure  7: Estimator Poles and Open Loop Transmission 
Zeros for Three-Control Case 
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estimator eigenvalues associated with the actuators are sent to the large 
magnitude transmission zeros, and are referred to here as "infinity" poles. 
In the three-control case, the six remaining eigenvalues (three complex 
conjugate pairs) corresponding to structural modes 1, 3, and 7 are sent to 
the six transmission zeros near the origin. These are termed "zero" poles. 
The two-control case is similar to the three-control case except that 
mode 7 is driven to a nearby pair of finite zeros which appear instead of 
one of the accelerometer pairs. For "zero" and 'infinity" transmission 
zeros which are in the right half plane, left half plane mirror images are - 
used instead to provide for a stable system. 

By the separation principle, the set of eigenvalues of the combined 
estimator/regulator is the union of the eigenvalues of A-LC and A+BK. 
While the software was sufficient for the 26th order regulator design, it 
had diff iculty with the 52nd order system formed by the 
reguIator/estimator. In addition to its size, the system which results 
from the placement of estimator eigenvalues and eigenvectors as 
described above has eigenvalues which span 15 orders of magnitude. It is 
also ill-conditioned since the zero poles are nearly equal. The computed 
closed loop eigenvalues of this 52nd order system are entirely unlike 
those of A-LC and A+BK, and the estimator gains are incredibly large. 
Setting the zero poles identically equal to zero does not improve the 
si tuat ion.  By moving the estimator zero poles and infinity poles as 
described below, more reasonable results are obtained. 

a pair of the 
transmission zeros near the origin are real and reflexive (i.e. zl=-z2). 
When used as estimator poles, the two form a multiple pole since the 

poles typically create problems for eigenvalue software, hence the poles 
are shifted slightly to separate them. The interesting result is that this 
reduces bending moment, torque, and control deflections by an order of 
magnitude, indicating extreme sensitivity to the placement of these poles. 

Before testing the effects of moving the zero poles and infinity poles, 
a 52nd order base case which the software can handle is established. The 
magnitudes of the infinity poles are reduced to 880, which is about twice 
as large as the largest finite pole. This is defined as unity scaling for the 
infinity poles. Zero pole magnitudes are increased by simply dropping the 
exponent of the scientific notation of the zero poles. For example, 
- 1 . 3 ~ 1  0 -2k j4 .3~1  0-3 becomes -1.3kj4.3. The resulting set of zero poles 
are designated as having a zero pole scaling of one. 

Holding the infinity pole scaling at unity, the effects of moving the 
zero poles by changing the zero pole scaling are shown in Figs. 8 and 9. 
Decreasing the zero pole scaling, which places the zero poles closer to the 
origin, causes an increase in bending moment, torque, and control 
deflection rms. Bending moment actually has a minimum at a zero pole 
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scaling of 0.3. For a zero pole scaling less than 0.3, these quantities 
increase rapidly. Minimum singular values of the return difference matrix 
are given for both w = 1 0  and w z 9 0  radlsec in Fig. 8 because, as shown in 
Fig. 12, the minimum singular value achieves minima near these two 
frequencies. As the zero poles approach the origin, the minimum singular 
value at w ~ 9 0  rad/sec decreases slightly, while the minimum singluar 
value at w=10  rad/sec increases. The zero poles corresponding to a zero 
pole scaling of 0.3 are chosen for the final design to obtain good minimum 
singular values without control saturation or excessive wing root loads. 

Fixing the zero pole scaling at 0.3, the infinity pole scaling is 
similarly adjusted. In Figs. 10 and 11 it is shown that increasing the 
magnitude of the infinity poles reduces bending moment, torque, and 
control rms, while it increases the minimum singular values at both u=10 
and w ~ 9 0  rad/sec. The estimator feedback gains increase by 
approximately one order of magnitude for each step shown in Figs. 10 and 
11. An infinity pole scaling of five is chosen since larger scalings do not 
yield significantly better performance or robustness. As expected, varying 
the weightings for the estimator eigenvectors corresponding to the 
estimator infinity poles has no effect on the behavior of the system since 
these eigenvectors are arbitrary. 

As can be seen in Figs. 8-11, the locations of the zero poles of the 
estimator have a greater affect on both the rms responses and the singular 
values than do the locations of the estimator infinity poles. With the 
Doyle-Stein approach to LTR, all estimator poles move simultaneously and 
it is not possible to evaluate the effects of independently varying the 
locations of the estimator zero and infinity poles. 
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Section 6 

Final Desians - 

The results for the final reguIator/estimator designs are summarized 
in Tables 8 and 9 and Figs. 12-14. The effects of sensor noise equal to 5% 
of full state regulator accelerometer outputs are included in Tables 8 and 
9. Accelerometer bandwidth is 10,000 Hz. Comparing Tables 6 and 8 it 
can be seen that other than bending moment in the three-control case, the 
performance parameters (control activity, wing root loads, and singular 
values) have been nearly recovered. The three-control case still has a 
lower bending moment than the two-control case, though still at the 
expense of higher torque and lower stability margins. Both designs have 
good stability margins, and both have control rms deflections which are 
only about half of the saturation values. In both cases the bending moment 
at the design velocity is actually less than that of the open loop system at 
a lower velocity. 

The gust load alleviation provided by the control systems at a 
velocity for which the wing is open loop stable is also shown in Table 8. 
The two-control case provides a 10% reduction in bending moment with no 
increase in torque, while the three-control case reduces bending moment 
i5%, though with a 40% increase in torque. In both cases shear changes 
very little and stability margins are good. Since the bending moment is an 
order of magnitude greater than the torque, a significant reduction in total 
wing root load is achieved. At no point are the control surfaces found to 
saturate. 

Stabilization of the first bending mode at the design velocity is 
shown by the closed loop root locus in Fig. 13. The onset of flutter now 
occurs at a velocity of 941 fps. This is a 5% increase in flutter speed 
compared with the open loop configuration. In the previous study [22,23] 
with a different mathematical model of the wing, a 28% increase in 
flutter speed was achieved. In an attempt to increase the flutter speed 
for the wing used in this study, the real parts of the poles associated with 
the the unstable mode were moved still farther to the left. The results 
are shown in Table 10. In order to achieve a 17% increase in flutter speed, 
the real parts of these poles had to be moved to -200. With full state 
feedback the control surface activity was within acceptable bounds but 
with the compensator in place the control surface deflections exceeded 
the allowable limits. In this report the design point of 909 fps is very 
close to the flutter speed of 896 fps; whereas, in the previous example the 
design speed was also 909 fps but the flutter speed was 750 fps. This 
means that the wing was considerably less stiff in the previous example 
and it is felt that this difference in the mathematical models of the wing 
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Velocity (fps) 909 

TE Outboard 7 .669  

TE Inboard 6.366 

LE 6 .469  

TE outboard 65 .93  

TE Inboard 5 5 . 9 8  

LE 5 7 . 5 1  

21310 

464 .3  

1632 

0.922 

22,-5.7 

- +54.9  

909 833  833  

RMS Responses 

Control Deflections (deg) 

8 . 2 3 1  - 7.374 

- - 6.092 

6 . 3 3 3  - 6 . 1 9  

Control Rates (deg/ sec) 

90.78 - 42.37  

- - 33.48  

73.95 - 33.58 

(inch-lbs) Bending Moment 

22090 22980 19430 

Shear (1bs 1 

466.2 4 1 2 . 1  4 2 0 . 1  

Torque (inch-lbs) 

817 .5  11-IL 
'1'1 a ,  

1286 

*MSV = Minimum Singular Value 

Minimum Singular Value 

0 . 9 1  - 0.979 

MIMO Gain Margin (DB) 
20 log (1/ (1LMSV) 1 * 

22,-5.7 - 33.6,-5.9 

MIMO Phase Margin (des) 
- +cos-1 (1- (MSV2) / 2 )  

- +58.6  - +54.9  - 

833 

7 .873  

- 

6.054 

50 .67  

- 

4 0 . 9 3  

20640 

428 

813.3 

0 .977  

38.4,-6 

k 5 9 . 2  

T a b l e  8 :  Performance of F i n a l  Compensator Designs 
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TEO 

TE O u t b o a r d  - 

TE Inboard 5.968 

LE 6.199 

TE O u t b o a r d  - 

TE Inboard 82.43 

LE 83.41 

0.527 

Failed Control 

T E I  LE TEO 

RMS Responses 

C o n t r o l  Deflections (deg) 

8.218 8.059 - 
- 6.157 - 
6.38 - 6.374 

C o n t r o l  Rates ( d e g / s e c )  

82.72 81.6 - 
- 72.14 - 

73.93 173.9 - 

Minimum Singular Value 

0.644 0.679 0.293 

MIMO Gain Margin (DB) 2o (iti.--.. - visvi j * 

6.5,-3.7 9.0,-4.3 9.9,-4.0 3.0,-2.2 

MIMO Phase Margin (deg) 
- +cos-l(l- (MSV2) /2) 

- +30.6 - +37.6 - +39.6 

*MSV = M i n i m u m  Singular  V a l u e  

LE 

8.406 

- 
- 

131. 

- 

- 

0.583 

7.6,-4 .O 

- +16.8 - +33.9 

T a b l e  9: Effects of a Single Control Failure on Final 
Compensator Designs 
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TE Outboard 

TE Inboard 

LE 

TE Outboard 

TE Inboard 

LE 

Mode 1 Pole Position (Real Part) 

-8.1* -40* -80* -200* -40** 

RMS Control Responses 

Control Deflections (deg) 

12.09 12.1 12.1 12.1 18.6t 

10.44 10.46 10.47 10.48 22.48t 

11.77 11.78 11.77 11.76 17.65t 

Control R a t e s  (deg/sec) 

136.2 135.8 137.4 150.7 134.8 

125.7 130.8 137.4 151.5 87.44 

138.4 137.8 133.8 138.9 94.29 

RMS Structural Responses* 

(Fu l l  state responses w e r e  constant t o  within a f e w  percent . )  

Bending Moment (inch-lbs) 14660 
Shear (lbs) 446 
Torque (inch-lbs) 1962 

Minimum Singular Value 

0.93 0.947 0.962 0.952 0.915 

Flutter Velocity (fps) 

941 987 1011 1052 

Flutter Velocity Increase (%) 

5 10 13 17 

* Ful l  State Regulator 

** Regulator/Estimator 

t Control Saturation 

T a b l e  10: Effec ts  of Mode 1 P o l e  P lacement  
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-200** 

24.lt 

60.43t 

29.9t 

305.5 

159.0 

253.8 

0.9 

t 
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structures used in the two studies accounts for the difficulty in achieving 
as large a percentage increase in the flutter speed. It should be noted that 
the absolute closed loop flutter speed was 941 fps in this study whereas 
in the previous example it was 960 fps, a difference of only 2%. 

Fig. 12 clearly shows the loop transfer recovery by plotting the 
minimum singular value of the return difference matrix versus frequency 
for the two- and three-control systems with full state feedback and with 
estimators in the feedback loops. As in the full state feedback case, the 
two-control system has higher minimum singular values, making it the 
more robust system. Recovery is best near the flutter frequency, but is 
also good at low and high frequencies as well. 

Minimum singular values for the two- and three-control systems are 
plotted versus velocity in Fig. 14. The minimum singular values peak at 
the design velocity, hence the systems are most robust at this velocity. 
Above the design velocity the system rapidly loses robustness, becoming 
unstable near 941 fps (4.61 psi) as the eigenvalues of the first bending 
mode move into the right-half plane. At lower velocities the singular 
value is somewhat reduced but never falls below 0.9 for the two-control 
case and 0.8 for the three-control case. Thus the flutter control system 
does not cause the wing to become unstable at velocities where it is open 
loop stable. 

The effects of a single, undetected control surface failure are 
examined for the final reguIator/estimator designs. In Table 9 it can be 
seen that though the loss of any one control surface reduces the minimum 
singular value and increases control surface rms, no control surface 
saturates and the designs are still nominally stable. Even the worst case, 
t11s Idllult: of the TE oiitboa;d su;face ir: the tws-centre! case, ?.?!!.?O gain 
margins of +3.0 and -2.2 DB and MlMO phase margins of k16.8 degrees are 
maintained. 

rL. z-:1*.-- 

45 



> 

- _- 
e-- -- / ‘  ‘r(e* - - 0 ,- - - /’ _------ 

L 

i?j 

/ e----- ---o- --------- 
# 

1 ,‘ 
L 

- 3-Control Accelerometer 

- 2-Control Full State 

----- 
Feed back 

Feedback 

Feedback 

Feedback 

2-Control Accelerometer --- 
r 
I 

L----C---- - - - - -: \ \ 4 ----- &’ L - 0 -  
.e- 

3-Control Full State --- 

E 

1 .o 

0.98 

0.96 

0.94 

0.92 

I I I I l I I l l  I I I I 1 1 1 1  

1000 
0.90 I 

10 100 

Frequency (radlsec) 

Figure 1 2 :  Minimum S i n g u l a r  Va lues  o f  t h e  R e t u r n  
D i f f e r e n c e  Matrices v e r s u s  Frequency 

46 



* 
m c 
o, 
Cu 

L 

I- 

E - 

a-  909 fps 
*-loo0 fps 

T 500 

I Mode 9 - 
Actuator modes t 400 
lie off of graph 

Mode 4 I 

L t  *0° 
Mode 3 

Gust Modes 
I &-. :I I I I 

Unsteady Aerodynamic Modes 
- 1  

-60 -50 -40 -30 -20 -10 0 10 20 30 

Real 

F i g u r e  13 Locus of Closed Loop Aeroelasti 
Ve 1 oc it y 

47 

Roots w i t h  



1 .o 

0.9 

0.8 

0.7 

0.6 

0.5 
0 

I 

0 2 Controls 

0 3 Controls 

250 500 750 

Velocity (fps) 

I 

Figure 14: Minimum Singular Values of the Return 
Difference Matrices versus Velocity 

48 

1000 



SECTION 7 

CONCLUSIONS 

In this report a c sign of contr te theory for eigensp d I laws 
and state estimators is presented which is analogous to full state control 
design via LQR theory, estimator design via Kalman filter theory, and LTR 
via the Doyle-Stein techniques. This eigenspace theory is successfully 
applied to the design of an active flutter suppression/gust load alleviation 
system for a hypothetical model of a wing with leading and trailing edge 
control surfaces. Robust flutter stabilization is achieved by eigenvalue 
placement, and wing root loads are reduced by eigenvector shaping. The 
full state regulator properties are then recovered by direct placement of 
estimator eigenvalues and eigenvectors at or near the plant transmission 
zeros and associated left zero-directions. 

In aircraft control problems in which performance specifications are 
specified or can be easily interpreted in terms of eigenvalue/eigenvector 
placements (i.e. handling qualities enhancement, modal decoupling) 
eigenspace techniques appear to be the most efficient approach to control 
law design. In other situations such as many aeroelastic control problems, 
where the order of the system is high and the desired closed loop 
eigenstructure is not apparent, it may be necessary to perform a number of 
iterations on the desired closed loop eigenstructure before acceptable 
performance is achieved. Thus in these cases the design procedure is not 
much different from LQG design using the Doyle-Stein technique for LTR in 
which a number of iterations are made until acceptable performance is 
achieved. Both eigenspace and LQG techniques usually involve trading off 
rms responses and LTR, however, eigenspace LTR offers the additional 
flexibility over Doyle-Stein LTR of being able to independently move finite 
and infinite estimator poles. 

In systems in which leading and trailing edge surfaces are used it is 
important that control effort should be balanced between the leading and 
trailing edge to provide bending moment reduction without an increase in 
torque. 
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